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 Precipitation as a major water cycle variable influences the occurrences and distribution of terrestrial water 
storage change (TWSC), evapotranspiration (ET), and river discharge (Q) of a large river basin. However, its 
relationship with the other water cycle variables using probabilistic dependence structure concept has not 
been addressed much. Furthermore, precipitation derived from gauge record is plagued by bias due to 
orography and under-catch.  To fill these gaps, bivariate copula and precipitation derived from reanalysis and 
satellite data were used. In the present study, the basin-wide averages of the precipitation products 
APHRODITE, ERA5, and IMERG were used as predictors, whereas the areal mean of MOD16 
evapotranspiration, GRACE TWSC, and gauge discharge were used as dependent variables (predictants) for 
the Brahmaputra basin. The bivariate Archimedean copulas were applied to all the pairs of precipitation-
TWSC, precipitation-ET and precipitation-Q based on the optimal marginal distributions obtained.  Using the 
best copula for each pair of the variables, the conditional probability was constructed to predict the 
predictants for different precipitation amounts (5th, 25th, 50th, 75th, and 95th percentiles). The focus of the 
analysis was on two scenarios of the predictants (i.e.,≤ 5th and ≥ 95th percentiles). The non-exceedance 
conditional distribution of TWSC, ET, and Q (all predictants ≤ 5th percentile) decreases with precipitation 
increase. However, the exceedance probability of the predictants (≥ 95th percentile) increases gradually with 
an increase in precipitation. The results revealed that both ERA5 and IMERG precipitation data could be used 
to derive probabilistic measures of the water cycle variables in the absence of gauge-based precipitation. 
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1. INTRODUCTION 

The relationship between precipitation and hydrologic variables is critical 
in understanding the occurrence of such variables in a hydrologic system. 
In order to attain water security and improved flexibility to hydrologic 
extrema, a pragmatic discernment of water resources evolution at the 
basin level is necessary (Sheffield et al., 2018).   This is evident when 
dealing with the water budget of large river basins. The Pearson’s 
correlation coefficient has been widely used in hydrology to relate one 
variable with another, but this statistical metric follows the assumption 
that the data follows normal distribution and are linear. Moreover, 
correlation coefficient is very sensitive to outliers (Legates and McCabe, 
1999). 

However, hydrometeorological variables are often known to be non-linear 
and rank-based correlation coefficients like Spearman’s rho and Kendal’s 
tau are preferred (Li et al., 2015; Uttarwar et al., 2020). Accordingly, 
prediction of a hydrological variable is carried out using various methods, 
namely, ordinary least square (OLS), multiple linear regression (MLR), 
partial least squares regression (PLSR), principal component 

analysis/regression (PCA/PCR) and  geographically weighted regression 
(GWR), empirical method- Budyko framework (Li and Quiring, 2021), 
machine learning algorithms, conceptual hydrological model (Poncelet et 
al., 2017) and semi-distributed/ distributed models (Hasan and Tarhule, 
2020; Jato-Espino et al., 2017; Ndehedehe et al., 2016; Sinha et al., 2019; 
Abudu et al., 2010; Hu et al., 2021; Yuan et al., 2019; Zhou et al., 2020; 
Abudu et al., 2010; Almanaseer and Sankarasubramanian, 2012; Li et al., 
2020; Li and Quiring, 2021; Han et al., 2021; Seyoum and Kwon, 2020; 
Sinha et al., 2019; Sun et al., 2014; Sahana and Timbadiya, 2020; Sridhar 
et al., 2019). 

For example, researchers investigated the long-term terrestrial water 
storage anomaly from GRACE data as affected by precipitation, runoff, 
surface water storage, soil moisture storage and population density using 
geographically multiple regression (GMR), ordinary least square (OLS) 
and geographically weighted regression (GWR) (Hasan and Tarhule, 
2020). It is reported that GWR is important for accounting the spatial 
locations to characterize the variability of GRACE TWSA long-term trends 
in space.  In the assessment of watershed characteristics on long term 
water balances, machine learning algorithms like neural network (ANN) 
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and relevance vector machine (RVM) were found to perform better than 
MLR in determining the watershed parameter (Sinha et al., 2019). PLSR 
and global hydrological models were used to predict terrestrial water 
storage (TWS) over central Asia using multiple satellite data (Hu et al., 
2021). PLSR was found to be useful for simulation of the hydroclimatic 
variables and prediction of TWS. 

A group of researchers used large sample hydrological approach and 
conceptual lumped hydrological model to estimate runoff variations over 
different landscape spread over Austria, France and Germany (Poncelet et 
al., 2017). The consistency of four precipitation products and GRACE TWS 
over the Arabian Peninsula was assessed using multivariate statistical 
approach and Pearson’s correlation coefficient (Wehbe et al., 2018). In 
another study, satellite-based precipitations TRMM and CHIRPS were 
assessed against gauge-based precipitation to evaluate their performance 
in reproducing streamflow and hydrological signatures of a humid tropical 
catchment in India (Sharannya et al., 2020). However, limited studies have 
focused on the probabilistic dependence of precipitation and other water 
cycle variables using copula. 

In order to obtain the probabilistic prediction, the dependence structure 
between the water cycle variables needs to be achieved using copulas. 
Copulas are multivariate techniques used to derive the dependence 
structure between two or more continuous/discrete variables (Genest and 
Favre, 2007; Nelsen, 2006). Copulas have been extensively applied in 
various fields. For example, in the area of hydrologic sciences, copulas find 
applications in the dependence of hydroclimatic variables, drought 
characterization, flood frequency analysis, compound climate extreme 
events, variance-based sensitivity analysis, among others (Uttarwar et al., 
2020; Sajeev et al., 2021; Muthuvel and Mahesha, 2021; Hao et al., 2018; 
Tavakol et al., 2020; Zscheischler and Seneviratne, 2017; Sheikholeslami 
et al., 2021). 

Copulas have also been increasingly applied to make a probabilistic 
prediction of a dependent variable using conditional distribution 
concepts. Ahn and Palmer explored nonstationary frequency analysis of 
annual low flow in the Connecticut River Basin, United States using 
nonstationary and stationary copula approaches (Ahn and Palmer, 2016). 
Due to the outcome of nonstationary copulas, their findings show the 
existence and intensity of low flows to be lesser for the same probability. 
Given the dependence structure of precipitation-streamflow, a group of 
researchers estimated the conditional distribution of required 
environmental flow for different precipitation scenarios for three 
watersheds of varying sizes from China, Germany, and the USA (Liu et al., 
2016). Their results show that the joint streamflow drought index could 
help indicate the wetness/dryness for drought onset determination and 
persistence. 

Similarly, the meta-Gaussian model was used to predict standardized 
runoff index (SRI) given the standardized precipitation index (SPI) in the 
conditional distribution framework for ten climate divisions in Texas, USA 
(Hao et al., 2016). A group of researchers applied the concept of the 
conditional marginal distribution of suspended sediment load (SSL) given 
discharge level for seven significant rivers in the USA (Shojaeezadeh et al., 
2018). In another similar study, the infilling of suspended sediment load 
was carried out using conditional distribution of suspended sediment load 
given discharge in Jenshou station, Hualian River of eastern Taiwan (Shiau 
and Lien, 2021). Liu and Menzel investigated the probabilistic dependence 
structure between river discharge and climatic variables and the 
associations to large atmospheric oscillation over Baden-Württemberg in 
Southwest Germany (Liu and Menzel, 2018). A group of researchers 
applied bivariate copula model to derive combined distributions of air-
water temperatures and streamflow-water temperature and subsequently 
used conditional probability distribution to predict maintainable water 
temperature for maintaining the ecology in the river given air temperature 
and discharge for the central extent of the Yangtze River in China (Tao et 
al., 2020). 

Precipitation is often the most significant component of the water cycle. 
The main caveat with gauge-based precipitation is wind-induced under 
catch and the altitude bias gauge deployment apart from many other 
quantification impediments (McCabe et al., 2017). It is also sparsely 
recorded in mountainous regions with varying topographic features. 
Reanalysis data are obtained from model runs and are not gauge 
corrected. Satellite-based precipitation has better spatial coverage than 
gauge-based precipitation, but it can under/over predict low/high 
precipitation depending on the climate of a region. Hence, gauge, 
reanalysis, and satellite-based precipitation products were used as 
independent variables in this study. TWSC, ET, and Q were used as 
dependent variables using dependence structure in copula for the 
Brahmaputra basin as a case study. 

Moreover, to the best of the authors' knowledge, no such study was 
conducted for a large river basin like the Brahmaputra on the dependence 
measure between precipitation from Asian Precipitation Highly Resolved 
Observational Data Integration Towards Evaluation of the Extreme Events 
(APHRODITE), ERA5 reanalysis, and Integrated Multi-satellitE Retrievals 
for GPM (IMERG), and TWSC, ET, and Q. This study could be extended for 
any large river basin worldwide. The principal goal of the current research 
is to make probabilistic predictions of TWSC, ET, and Q for different 
precipitation scenarios. We hypothesize that precipitation is a good 
predictor of the dependent water budget variables. Accordingly, the 
following research questions were attempted: (1) Which optimal marginal 
distribution describes each water cycle variable? (2)  Which is the optimal 
copula for a given pair of precipitation-TWSC, precipitation-ET, and 
precipitation-Q? (3)  How well can each precipitation product help to 
predict TWSC, ET, and Q? 

2. MATERIALS AND METHODS 

2.1 Case Study area 

The Brahmaputra basin lies between 25°–32° North latitude and 82°–
98°East longitude. The basin with an average discharge of about 20,000 
m3s-1 is the fourth largest river in terms of the quantity of runoff in the 
world (Jian et al., 2009). The total drainage basin area is about 517,224 
km2 at Bahadurabad gauging station. Bhutan and Bangladesh share about 
8% each, about 34% in India, and about 50% in China (Figure 1) 
(Immerzeel, 2008). The Brahmaputra's source originates from the 
Chemayungdung Glacier and throughout the upper part in Tibet, it is 
known by Tsangpo (purifier in Tibet) and in Chinese "Yarlung Zangbo" 
(Ahmad and Lodrick, 2017). In contrast, the lower part of the river in India 
and Bangladesh is known as Brahmaputra ("son of Brahma"). From the 
origin, it flows for about 1150 km eastwards. Then it enters the northern-
most point of Arunachal Pradesh (India), turns southwards, and flows for 
nearly 500 km, it directs towards west-flowing through the states of 
Arunachal Pradesh, Assam, and Meghalaya for next about 700 km before 
it finally moves into Bangladesh (Futter et al., 2015). The Tibetan Plateau 
bifurcates the basin into two unique zones of climate: (1) the northern part 
of the basin is dominated by mountain climate and is characterized as cold 
and dry; and (2) the southern part is dominated by the tropical monsoon 
climate and is categorized as humid and warm thereby receiving high 
amount of precipitation under the impact of the Indian summer monsoon 
(Pervez and Henebry, 2015). The Brahmaputra is characterized by 
braided channels, whereas the Ganges meandering channels (Futter et al., 
2015). It is topographically and ecologically abundant in crops and natural 
biodiversity falling into three distinct topographic areas: (a) the Tibetan 
Plateau covering 44% of the area with 3500 m and above high, (b) the 
Himalayan section covering 29% with 100 – 3500 m and (c) the 
floodplains covering 27% with below 100 m elevation (Immerzeel, 2008).  
The river is a lifeline to nearly 70 million people who depend on water 
resources for food production (Hasson et al., 2013). 

 

Figure 1: Study area map of Brahmaputra basin 

2.2 Data sets 

The first step toward water budget analysis is obtaining precipitation data, 
often sparse for poorly gauged basins like the Brahmaputra. Precipitation 
is also the most widely used independent variable in hydrological 
investigations. To assess the utility of precipitation data derived from 
various sources, viz., gauge-based, reanalysis, and gauge-corrected 
satellite and satellite data, monthly probabilistic assessments of terrestrial 



Water Conservation & Management (WCM) 6(1) (2022) 61-69 

 

 Cite the Article: Surajit Deb Barma, Sameer Balaji Uttarwar, Prathamesh Barane, Nagaraj Bhat, Amai Mahesha (2022). 

Evaluation of ERA5 and IMERG Precipitation Data for Risk Assessment of Water Cycle Variables of a Large River Basin in South Asia Using Satellite Data and 
Archimedean Copulas. Water Conservation & Management, 6(1): 61-69. 

 

 

water storage change (TWSC), evapotranspiration (ET), and streamflow 
were carried out. 

2.2.1 Precipitation 

2.2.1.1 APHRODITE gauge data 

The Asian Precipitation Highly Resolved Observational Data Integration 
Towards Evaluation of the Extreme Events (APHRODITE) V1101 is 
available on a daily scale for the year 1951-2007 at 0.25/0.50 degrees 
spatially, but APHRODITE-2 (V1901) is available from 1998 to 2015 for 
the exact spatiotemporal resolution for whole of Asia (Yatagai et al., 2012). 
The main improvement of V1901 is the 24-hour accumulation period 
adjustment to the 00 - 24 UTC of the stamped date. The other improvement 
in APHRODITE-2 (V1801 and V1901) was the daily climatology used as a 
ratio of daily rainfall to the climatology to interpolate the gauge data. In 
contrast, monthly climatology was used for older versions. The long-term 
version has been applied in various studies and found to be performing 
well. However, the newer version is yet to be evaluated on a large scale 
though it was found to perform well with respect to gauge data in the 
Brahmaputra basin (Ji et al., 2020). In V1801 and V1901, the end of the day 
(EOD) was matched using the satellite-based precipitation CMORPH, and 
the extreme values were identified using CMOPRH and TRMM-3B42. The 
monthly areal average precipitation for the Brahmaputra basin was 
derived from daily data from 2003 to 2014 for the current study from 
http://aphrodite.st.hirosaki-u.ac.jp/download/. 

2.2.1.2 ERA5 reanalysis data 

The ERA5 is the 5th reanalysis product and replacement to ERA-Interim 
and all previous versions of the European Centre for Medium-Range 
Weather and Forecasting (ECMWF) reanalysis (Hersbach et al., 2020). In 
a comparative study to ERA-Interim and Global Precipitation Climatology 
Project (GPCP) as the base data for the 1979–2018 period, Nogueira found 
that ERA5 showed lower bias as well unbias root-mean-squared error and 
higher correlations over most of the tropics and limited regions of mid-
latitudes (Nogueira, 2020). However, ERA-Interim outperformed ERA5 
over the Himalayas. Overall, ERA5 has improved parameterization and 
better resolution leading to trade-off performances over most of the 
regions. The monthly areal mean ERA5 precipitation (0.25-degree 
lat/long) data was downloaded from the Google Earth Engine platform for 
2003 to 2014. 

Before using any precipitation product, it is recommended that the 
product be assessed against the gauge-based product in terms of the three 
categorical metrics: POD (1), FAR (0), and CSI (1), and the continuous 
metrics, viz., r (0), RBIAS (0), ME (0), MAE (0), and RMSE (1). The 
numerical figures within the braces are the optimal values of the 
corresponding metric.   For more details, the work of the categorical 
metrics and the continuous metrics may be referred from literature 
(AghaKouchak and Mehran, 2013; Duan et al., 2016). Since the focus of the 
current study is at the basin level, no pixel-to-pixel and grid-to-grid level 
assessments were carried out. The daily and monthly performance metrics 
were tabulated in Table 1. The diurnal POD is 0.88, which is the fraction of 
ERA5 correctly representing the actual occurrence of precipitation against 
APHRODITE. The monthly POD is 1 as expected because precipitation at 
this scale results from the daily precipitation that occurs on either of the 
days of a month. 

Table 1: Performance metrics of ERA5 and IMERG against 
APHRODITE 

Statistical Metric 
ERA5 IMERG 

Daily Monthly Daily Monthly 

Probability of detection 
(POD) 

0.88 1 1 1 

False alarm ratio (FAR) 0.01 0 0.03 0 

Critical success index 
(CSI) 

0.87 1 0.97 1 

Pearson’s correlation 
coefficient (r) 

0.91 0.99 0.91 0.99 

Relative bias (RBIAS) 0.95 0.95 0.25 0.25 

Mean error (ME) 2.77 84.37 0.73 22.44 

Mean absolute error 
(MAE) 

0 0.19 0 0.01 

Root mean squared 
error (RMSE) 

4.07 100.09 2.27 32.79 

The daily FAR is of negligible magnitude of 0.01, which is the proportion 
of precipitation detected by ERA5 but not confirmed by APHRODITE. The 
monthly FAR is 0, which is likely to occur because a single day of rain in a 
given month is enough for FAR to be of this magnitude for that month 
when it has actually not occurred. The daily and monthly CSI are 
respectively 0.87 and 1. This metric is the combination of POD and FAR 
and is also known as threat score representing the overall score of ERA5 
against APHRODITE. The daily correlation coefficient between ERA5 and 
APHRODITE is 0.91, which indicates good linear strength. The monthly 
correlation increases slightly to 0.99. The daily and monthly BIAS is 0.95, 
which means ERA5 is outperforming against APHRODITE. The daily ME, 
MAE, and RMSE are 2.77, 0, and 4.07 mm, respectively, whereas the 
monthly ME, MAE, and RMSE are 84.37, 0.19, and 100 mm, respectively. 
All the monthly categorical and continuous statistics are higher than the 
daily ones (except for BIAS) but at the cost of having higher error metrics 
primarily due to temporal resolution effects. 

2.2.1.3 GPM IMERG satellite-based data 

The final run (FR) global precipitation measurement (GPM) resulted in the 
program known as the Integrated Multi-satellitE Retrievals for GPM 
(IMERG). The rainfall was derived from several satellite passive 
microwave (PMW) sensors encompassing the GPM collection using the 
Goddard Profiling Algorithm of 2017(GPROF2017) (Huffman et al., 2019). 
The inter-calibration of the gridded data (0.1°x0.1°; June 2000 onwards) 
to the Combined Ku Radar-Radiometer Algorithm (CORRA) of GPM 
product on 30-minute basis with adjustment to Global Precipitation 
Climatology Project (GPCP) in-situ satellite product was carried out to 
rectify identified errors over high-latitude ocean and tropical land. Though 
the precipitation product comes in half-hourly, daily, and monthly scales, 
the latter two were derived from the former. In this study, the monthly 
IMERG V06 data was obtained by summing the daily precipitation from 
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary?keyw
ords=GPM. A group of researchers conducted a comparative study of two 
products (ER=early run and FR) of IMERG for two decades over the whole 
globe (Li et al., 2021). ER estimated 12% more annual rainfall than FR over 
the land and 33% greater extreme precipitation over the earth. Since the 
FR is gauge-adjusted, it is used for long-term hydrometeorological studies, 
whereas ER is useful for short-term real-time studies like floods. The daily 
and monthly performance metrics of IMERG are better than ERA5 except 
for the correlation coefficient (r), which is the same at both the temporal 
scales, as shown in Table 1. Also, FAR is slightly higher but of negligible 
value. The performance metrics of IMERG are better than that of ERA5 as 
expected because IMERG is gauge-corrected, making it closer to 
APHRODITE. 

2.2.2 GRACE Terrestrial Water Storage Change (TWSC) 

The monthly variations of the earth's gravity field obtained by 
determining the length between two orbiting satellites since April 1st 2002 
have been provided by the Gravity Recovery and Climate Experiment 
(GRACE) satellites (Tapley et al., 2004). For regions of 200,000 km2 or 
more, GRACE data provide unprecedented accessibility to terrestrial 
water storage changes (with a precision of 1.5 cm equivalent water height) 
with respect to climate change, global change, human water use, 
groundwater extraction, which is unmeasured and unmanaged in several 
parts of the world. The GRACE data may be freely accessed from three 
different sources: the Jet Propulsion Laboratory (JPL), the Center for Space 
Research (CSR) at the University of Texas, and Geoforschungs Zentrum 
Potsdam (GFZ). These three products were obtained following the 
spherical decomposition of GRACE records. It is usually recommended to 
use the average of the three products to reduce uncertainty. Another 
category of GRACE records is the MASCON (mass concentration) dataset, 
which comes independently from JPL and CSR (Watkins et al., 2015). The 
solution from JPL is explicit, whereas the one from CSR is first spherically 
decomposed. In the current study, the solution from JPL is used because it 
is independent (Pellet et al., 2020). In this study, a simple derivative 
method representing the total water storage change (𝑇𝑊𝑆𝐶) between two 
data points in terms of mass anomalies is used and may be presented as 
(Oliveira et al., 2015; Wang et al., 2014): 

𝑑𝑠

𝑑𝑡
=

𝑇𝑊𝑆𝐴

𝑑𝑡
=

𝑇𝑊𝑆𝐴(𝑡 + 1) − 𝑇𝑊𝑆𝐴(𝑡)

𝛥𝑡
 (1)                                                                                 

where 𝑆 is the change in water storage with respect to time t, 𝑇𝑊𝑆𝐴 is 
terrestrial water storage anomaly. The basin-average of GRACE data was 
used for the current analysis. 

2.2.3 MOD16 Evapotranspiration (ET) 

The evapotranspiration forms a significant part of the water cycle that 

http://aphrodite.st.hirosaki-u.ac.jp/download/
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary?keywords=GPM
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary?keywords=GPM
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influences irrigation planning and crop water requirement. This study 
uses the MOD16 ET product, the derivative of GMAO (Global 
Meteorological Assimilation Office) climate, and MODIS global terrestrial 
evapotranspiration dataset obtained via Penman-Monteith equation (Mu 
et al., 2011). The cumulative evapotranspiration includes day and night 
components with soil heat flux calculation and improvement estimates of 
stomatal conductance from damp topsoil and covering surfaces of plants. 
MOD16 is also one of the most widely used ET products. A monthly 
product at a spatiotemporal resolution of 0.05 degree from the 1st month 
of 2003 to the last month of 2014 was used for the study after downloading 
from http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/. The 
dataset was spatially averaged over the Brahmaputra basin for further 
analysis. 

2.2.4 Discharge Data 

The daily water level (5 times a day) and weekly discharge (using the 
velocity-area method) of the Brahmaputra basin at Bahadurabad station 
are recorded by the Hydrology Division belonging to the Bangladesh 
Water Development Board (BWDB) (Masood et al., 2015). The daily water 
level and weekly discharge were used to construct rating curves (personal 
communication) to calculate the daily discharge. The daily discharge for 
2003-2014 was converted to monthly values by averaging the daily 
discharge in cumecs (m3/s). 

2.3 Methods 

The dependence measure between random variables is often determined 
using Pearson's correlation based on the normal distribution. However, 
such an assumption could be misleading while dealing with 
hydrometeorological variables having a nonlinear relationship between 
such random variables. Moreover, a nonlinear relationship also warrants 
the application of non-normal distributions. In this context, copula has 
been around for nearly two decades in hydrologic sciences opening up 
new understanding and insights embedded in hydrometeorological 
variables. The copula is attractive and advantageous over traditional 
bivariate methods. It is flexible to model two random variables (bivariate 
case) irrespective of the marginal distributions and handle linear and 
nonlinear variables. According to Sklar’s theorem, if 𝑋 and 𝑌 are the 
continuous random variables, then their joint distribution 𝐻𝑋𝑌(𝑥, 𝑦) and 
𝐶: [0,1]2 → [0,1]   copula are connected as (Sklar’s, 1959): 

𝐻𝑋𝑌(𝑥, 𝑦) = 𝐹𝑋𝑌(𝑥, 𝑦) = 𝐶[𝐹𝑋(𝑥), 𝐹𝑌(𝑦)] = 𝐶(𝑢, 𝑣) , 𝑥, 𝑦 ∈ 𝑅 (2) 

where 𝐹𝑋(𝑥) and 𝐹𝑌 (𝑦) are the cumulative distribution functions of 𝑋 and 
𝑌, respectively. In general, Archimedean copulas carry the following 
expressions: 

𝐶(𝑢, 𝑣) = 𝜙[−1][𝜙(𝑢) + 𝜙(𝑣)],  𝑢, 𝑣 ∈ [0,1] (3) 

where ∅(•) is a generator function of the copula and ∅[−1](•) is the pseudo-
inverse of ∅(•). The flexibility and ease of construction make Archimedean 
copulas widely used in different research areas with well-established 
copula functions (Genest and Favre, 2007; Nelsen, 2006; Zhang and Singh, 
2006). The Archimedean copulas, viz., Clayton, Frank, and Gumbel-
Hougaard copulas, were applied in this study. The details of such copulas 
are found in (Wable and Jha, 2018). The conditional distribution of a 
continuous variable for a value of another continuous variable could be 
obtained once the joint probability distribution function between the 
random variables is known. Then for the bivariate case, the probability 
distribution of 𝑈 conditioned on 𝑉 ≤ 𝑣 is given by (Uttarwar et al., 2020; 
Zhang and Singh, 2006): 

𝐶(𝑈|𝑉≤𝑣) = 𝐶(𝑈 ≤ 𝑢|𝑉 ≤ 𝑣) =
𝐶(𝑢, 𝑣)

𝑣
 (4) 

In the present study, the single-parameter copulas were used to study the 
two extrema of TWSC, ET, and streamflow, viz., non-exceedance 
probability (≤ 5th percentile) for the lower extreme and the exceedance 
probability (≥ 95th percentile) for the upper extreme given different 
scenarios of precipitation (5th,  25th, 50th, 75th, and 95th percentiles). 

The following steps were followed for the current study: 

(i) Select any two random variables between a precipitation dataset and 
TWSC or ET or streamflow. 

(ii) Determine the significant dependence measure using Spearman’s 
rho for the two selected variables, for example, precipitation and 
TWSC. The correlation will help us decide whether to go ahead with 
dependence modeling. 

(iii) Fit the parametric theoretical distributions, viz., gamma, logistic, 
lognormal, and Weibull to precipitation, TWSC, ET, and streamflow. 
The best fit marginal distribution for each variable is obtained using 
the Kolmogorov–Smirnov (KS) goodness of fit test. 

(iv) Obtain copula parameter using the pseudo-maximum-log-likelihood 
method (1000 simulations) for all the copulas. 

(v) Obtain the best fit copula based on Akaike Information Criterion 
(AIC), the lowest being the best. 

(vi) Derive conditional probability distribution of TWSC, ET, and 
streamflow given the explanatory variable, precipitation. 

3. RESULTS 

3.1 Identification of Marginal Distribution of Precipitation, TWSC, 
ET, and Discharge 

The best marginal distribution for APHRODITE and IMERG precipitation 
is gamma at 5% significance level and lognormal for ERA5 precipitation at 
10% significance level as per the KS statistics shown in Table 2. The 
optimal marginal distribution for ERA5 and the other two precipitations 
could be due to differences in magnitudes; especially lower values of ERA5 
are higher than those of the other two precipitation products. Moreover, 
IMERG is gauge-corrected satellite precipitation, which could resemble 
APHRODITE derived from gauge precipitation. 

Table 2:  KS statistics of different marginal distributions fitted to 
precipitation 

Marginal 
Distribution 

APHRODITE ERA5 IMERG 

Gamma 
0.1112 

(0.0539*) 
0.0769 

(0.3483) 
0.1120 

(0.0506*) 

Normal/Lognormal 
0.1428 

(0.0056) 
Normal 

0.1021 
(0.0945**), 
Lognormal 

0.1515 
(0.002654), 

Normal 

Weibull 
0.1128 

(0.0483) 
0.0771 

(0.3453) 
0.1143 

(0.0440) 

Note: * indicates 5% level of significance **indicates 10% level of 
significance. Bold figures indicate optimal distribution. 

The theoretical cumulative distribution curves are compared with the 
empirical distribution for each precipitation in Figure 2. TWSC being in 
anomaly form could be fitted only by kernel density functions like normal 
and quadratic, but only normal kernel density function was fitted in this 
study. Hence, no KS statistics was calculated, as shown in Table 3. Logistic 
and lognormal distributions, respectively, best represented ET and 
discharge. The cumulative distribution function curves of TWSC, ET, and 
discharge are presented in Figure 3 compared to their corresponding 
empirical distribution curves. 

 

Figure 2: Cumulative distribution function plots of precipitation 
products 

 

Figure 3: Cumulative distribution function plots of dependent variables 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/
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3.2 Dependence Modeling of Precipitation with TWSC, ET, and 

Discharge 

The bivariate Archimedean copulas were constructed using the optimal 

marginal distribution for each variable. Though all the Archimedean 

copulas were simulated, only the optimal copulas based on AIC measures 

(27 AIC values of that many pairs are not shown here for the sake of 

brevity) are shown in Table 4. Then, Pearson's linear and Spearman’s rank 

correlations were obtained for each pair of variables (Tao et al., 2020). All 

the pairs are either optimally represented by Frank or Clayton copulas, as 

shown in Table 4. The correlations (Pearson’s and Spearman’s) between 

all precipitation products (APHRODITE, ERA5, and IMERG) and TWSC and 

ET are significant for both observed and simulated data. 

 

Table 3: KS statistics of different marginal distributions fitted to 
dependent variables 

Marginal 
Distribution 

TWSC 
Evapotranspiration 

(ET) 

Discharge 

(Q) 

Gamma - 0.1169 (0.0369) 
0.0842 

(0.2483) 

Weibull - 0.1282 (0.0165) 
0.0832 

(0.2607) 

Logistic/ 

Lognormal 
- 

0.1059 (0.0751**), 
logistic 

0.1095 
(0.0599*) 

Normal 
kernel 

Optimal - - 

Note: * indicates 5% level of significance **indicates 10 % level of 
significance. Bold figures indicate optimal distribution 

Table 4: Performance measures of the optimal copula of different pairs of the water cycle variables 

Pair 
Optimal 
Copula 

Copula 
Parameter 

(ϴ) 

Pearson’s Linear Correlation 

(r) 

Spearman’s Rank Correlation 

(ρ) 

Observed Simulated* Observed Simulated* 

APHRODITE_TWSC Frank 5.9233 0.7639 0.5911 0.7658 0.7083 

ERA5_TWSC Frank 6.3882 0.7786 0.5553 0.7733 0.7511 

IMERG_TWSC Frank 5.5380 0.7437 0.6041 0.7517 0.7240 

APHRODITE_ET Clayton 2.1978 0.9024 0.4989 0.8893 0.7007 

ERA5_ET Frank 9.2382 0.8895 0.6182 0.8718 0.8371 

IMERG_ET Clayton 2.3581 0.9107 0.5499 0.8956 0.7491 

APHRODITE_Q Clayton 0.2606 0.4237 0.0903 0.3829 0.1863 

ERA5_Q Frank 1.6343 0.3871 0.2239 0.3514 0.5971 

IMERG_Q Clayton 0.2888 0.4531 0.1032 0.4008 0.1905 

Note: *Correlation is calculated from simulation values of 1000 data samples.

However, the correlations of the precipitation products with discharge are 
significant only for the observed values. In comparison, the correlations 
for simulated precipitation-discharge pairs are lesser. The correlations for 
precipitation-TWSC and precipitation-ET pairs are higher than those of 
precipitation-discharge pairs because the lags between the pairs may not 
influence much on the dependence measure of the first two pairs than the 
last pair. This is true when precipitation occurs; ET also occurs without 
much time lag.  The same is true with the occurrence of precipitation; the 
amount of TWSC is manifested with little elapse of time. The commonly 
rainfall-runoff concept demonstrates how rainfall occurring at a particular 
time in a given day or cumulative rainfall occurring in a given month may 
influence discharge at the outlet in days or months. As a result, the 
dependence measure expressed in Spearman's rank correlation and 
Pearson's linear correlation is found to be lesser for the precipitation-
discharge pair than the other two pairs. 

The scatter diagrams in Figure 4 and Figure 5 show that the simulated 
values of precipitation-TWSC and precipitation-ET pairs represent the 
observed values well. The scatter plots of APHRODITE and IMERG with 
TWSC look similar in pattern because both precipitations are connected to 
the gauge dataset. The scatter plots (Figure 6) for precipitation-discharge 
look different from the other two pairs, as evident from the linear and rank 
correlations. 

 

Figure 4: Scatter diagrams of different precipitation-TWSC pairs 

 

Figure 5: Scatter diagrams of different precipitation-ET pairs 

 

Figure 6: Scatter diagrams of different precipitation-Q pairs 

3.3 Risk Evaluation of TWSC Conditioned on Different 
Precipitation Scenarios 

The conditional distribution of TWSC under different precipitation 
scenarios could be evaluated once the joint distribution between TWSC 
and a given precipitation scenario is obtained. The risk evaluation of the 
occurrence of an event is associated with the exceedance/ non-exceedance 
of the TWSC for a given threshold of explanatory variable precipitation 
(Liu et al., 2018; Salvadori and De Michele, 2004). The next step is to 
evaluate the probability of occurrence of TWSC under five different 
precipitation scenarios on establishing joint distribution, as shown in 
Table 4. In order to achieve this, two scenarios of TWSC were investigated 
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(TWSC ≤ 5th percentile and TWSC ≥ 95th percentile as shown in Table 6) 
for every precipitation scenario. For example, the probabilities of 
occurrence of an event (TWSC ≤5th percentile from Figure 7) for different 
scenarios of gauge-based APHRODITE precipitation are 28%, 26%, 16%, 
10%, and 8%, corresponding to 5th, 25th, 50th, 75th, and 95th percentiles, 
respectively. 

Table 5: Magnitudes of precipitation corresponding to each percentile 

Precipitation 
Percentile 

5th 25th 50th 75th 95th 

APHRODITE 
(mm) 

2.7453 15.2911 74.5768 151.8014 205.0797 

ERA5 

(mm) 
24.2 58.5 144 274 361.6 

IMERG 

(mm) 
3.177638 17.78558 86.51642 201.9606 253.9442 

 

Table 6: Magnitudes of the dependent variable corresponding to each 
percentile 

Dependent Variable 
Percentile 

5th 95th 

TWSC (mm) -84.1232 71.7037 

Evapotranspiration (ET) (mm) 227.0304 281.7144 

Discharge(Q) (m3/s) 4751.536 42238.01 

Similarly, the probability of the lower value of TWSC (≤5th percentile) for 
the same scenarios of precipitation of gauge-corrected satellite-based 
GPM-IMERG and reanalysis ERA5 follows a very similar pattern. The 
conditional distribution of TWSC ≥ 95th percentile (Figure 7) increases 
with precipitation (for the same precipitation scenarios). For example, the 
conditional distribution of TWSC for APHRODITE precipitation scenarios 
is less than 1% for 5th (100 – 99.718 = 0.28%), 25th (0.32%), and 50th 
(0.83%) percentiles. However, the conditional probabilities are about 4% 
and 8%, respectively, for precipitation less than equal to 75th and 95th 
percentiles. Similar is the case for GPM-IMERG and ERA5. 

3.4 Risk Evaluation of ET Conditioned on Different Precipitation 
Scenarios 

The joint distribution of APHRODITE-ET is applied to obtain the 
conditional distribution of ET for different scenarios of APHRODITE. The 
conditional probabilities of ET ≤ 5th percentile (Table 6) (Figure 8(a)) are 
92, 48, 18, 13, and 12 %, corresponding to the APHRODITE precipitation 
values at 5th, 25th, 50th, 75th, and 95th percentiles. 

Similarly, the conditional probabilities of ET at its lower end (≤ 5th 

percentile) given the precipitation scenarios of IMERG are almost identical 
to that of APHRODITE. However, the conditional probabilities of ET given 
the scenarios of ERA5 are lesser than that with the other two precipitation 
datasets up to ≤ 25th percentile (Figure 8(b)). 

 

 

Figure 7: Conditional distribution plots of TWSC given different 
precipitation products 

The conditional probability of mean ET (≥ 95th percentile) (Table 6) 
(Figure 8) for all the scenarios of precipitation lies between 0 and 5. It 
means that the higher events of precipitation have a lesser effect on the 
evapotranspiration process. 

3.5 Risk Evaluation of Q Conditioned on Different Precipitation 
Scenarios 

The conditional distributions of Q for different precipitation scenarios (5th 
to 95th percentiles) decrease with the increase in precipitation. The 
probability of the Q≤5th percentile (Table 6 and Figure 9 (a)) are 
approximately 20%, 12%, 7%, 6% and 6 %, corresponding to APHRODITE 
precipitation at 5th to 95th percentiles, respectively. 

 

 

Figure 8: Conditional distribution plots of ET given different 
precipitation products 

Similarly, the probabilities of occurrence of Q ≤5th percentile are 
approximately 22%, 13%, 8%, 6%, and 6 %, corresponding to IMERG 
precipitation (Figure 9(c)) at 5th to 95th percentiles, respectively. 
Furthermore, the probabilities of occurrence of Q≤5th percentile are 
approximately 10%, 9%, 7%, 6%, and 6 %, corresponding to ERA5 
precipitation (Figure 9(b)) at 5th to 95th percentiles, respectively. 

 

 

Figure 9: Conditional distribution plots of Q given different precipitation 
products 

The conditional probabilities of the Q≥ 95th percentile (Table 6) (Figure 9) 
for different scenarios of precipitation increase with the increase in 
precipitation. Also, the probability of occurrence given the scenarios of all 
three precipitation products lies between 4 and 9%. 

4. DISCUSSION 

The risk assessment of the occurrence of an event is the exceedance/ non-
exceedance probability of the GRACE terrestrial water storage change 
(TWSC), evapotranspiration (MODIS-16 ET), and discharge (Q) for a given 
threshold of explanatory variable precipitation derived from in-situ 
measurement (APHRODITE), model-based reanalysis (ERA5), and gauge 
corrected satellite-based data (GPM IMERG). The study attempted to 
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probabilistically predict the dependent water budget variables, namely, 
TWSC, ET, and Q for five scenarios of precipitation derived from various 
sources. We proved the hypothesis that precipitation data ERA5 and 
IMERG are equally helpful as APHRODITE to predict the non-exceedance 
and exceedance probabilities of the dependent variables. 

4.1 Assessment of Risk of TWSC for given Precipitation Scenarios 

The magnitude of the non-exceedance probability of TWSC (≤ 5th 
percentile) for different scenarios of ERA5 follows a very similar pattern 
to that of when obtained for the scenarios of APHRODITE, whereas the 
conditional distributions of TWSC with respect to IMERG lie between the 
other two products. It is observed that lower values of TWSC are more 
sensitive to lower precipitation values for all the precipitation products. In 
contrast, the sensitivity of TWSC reduces with an increase in precipitation. 
For instance, when precipitation is less than equal to the 95th percentile, 
the sensitivity of TWSC reduces by as much as about a third/fourth of 
when precipitation is less than equal to 5th percentile. This could be 
because smaller rainfall events have more opportunity for infiltration and 
get into the groundwater system than for larger storm events, which could 
flow as runoff to surface water bodies. 

The harmonization of low extremes precipitation and TWSC occur during 
November – January and high extremes during June – September, which is 
reported elsewhere (Jia et al., 2020). Though the periods of harmonization 
are different, the present study covers not only the upper part of the 
Brahmaputra basin but also the whole basin. Moreover, there was a 
modulation between wetness and dryness of the lower and upper parts of 
the basin (Chun et al., 2020). The dependence structure of the joint 
distribution of TWSC-precipitation can evaluate the risk to about the same 
degree irrespective of precipitation data (Bibi et al., 2019). This is helpful, 
particularly for Brahmaputra basin, which is poorly gauged due to 
inhospitable terrain and has varying topographic features and climate 
making it too difficult to record in-situ hydrometeorological data. 

4.2 Assessment of Risk of ET for given Precipitation Scenarios 

ET is the link between water and energy budgets. Hence, it is necessary to 
understand its role in water budget and cycle components assessment. ET 
estimation could be useful to determine the water availability of the basin 
(Li et al., 2019). The non-exceedance probability of ET beyond 25th 
percentile of ERA5 is similar to that with the other two precipitation data. 
This behavior of lower probabilities of occurrence of ET may be attributed 
to the higher precipitation amount of ERA5 for lower percentiles (≤5th, 
25th) because it is seen that with the increase in the precipitation, the 
probabilities of ET decrease. Lower precipitation events have higher 
chances of evaporating than higher ones. It is evident from the values of 
APHRODITE and IMERG precipitation (Figure 8 (a), (b)) at ≤ 5th percentile, 
which is about 1/8 of ERA5 as shown in Table 5. It is more than 1/3 of 
ERA5 for APHRODITE and IMERG precipitation ≤ 25th percentile. It is 
noteworthy that beyond 25th percentile of precipitation, ERA5 
precipitation is a little more than one time of the other two precipitation 
products. The exceedance probabilities of ET increase with increase in 
precipitation. Such probabilities are negligible during non-monsoon 
season because it is very much less likely for a small amount of rainfall to 
contribute to a large amount of ET. 

4.3 Assessment of Risk of Q for given Precipitation Scenarios 

It is to be noted that the probabilities of occurrence of Q for APHRODITE 
and IMERG are very similar in pattern to each other, probably since IMERG 
is gauge-corrected satellite precipitation leading to a closer estimate of 
precipitation. However, the probabilities of occurrence of Q given ERA5 
are different for scenarios up to ≤5th, 25th compared to given APHRODITE 
and IMERG. Though the magnitude of ERA5 ≤ 5th percentile is about eight 
times (Table 5) to that of APHRODITE and IMERG (≤5th percentile), the 
probability of occurrence of Q (≤5th percentile) given ERA5 is only about 
one half when compared to given APHRODITE and IMERG in this scenario. 
The non-exceedance predictive capability of APHRODITE and IMERG for 
discharge is very similar as both the products are linked to in-situ 
measurements. 

Though APHRODITE and IMERG are better at predicting low flows, all 
three products equally perform to predict high flows. The non-exceedance 
probabilities of Q decrease with the increase in precipitation by almost 
three times (from 5th to 95th percentile). In contrast, the exceedance 
probabilities increase with increase in precipitation by about two times. 
This is because higher precipitation has a greater likelihood of causing a 
flood or a high flow. It is well known that the Brahmaputra basin 
experiences flood every year when maximum precipitation occurs during 
monsoon season, leading to a high flow level in the river. Hence, the copula 

concept in this context could be used for water supply management and 
flood control (Liu et al., 2016; Liu and Menzel, 2018). Copula could also be 
helpful to determine the threshold of low flow for the ecological balance 
of the Brahmaputra river. 

The limitation of bivariate copula is that if a variable is controlled by more 
than one variable, the probabilistic prediction may not be a representative 
of the actual prediction (Bibi et al., 2019). However, as a preliminary study, 
the present research could be extended to more than two variables. To 
further explore this investigation, it is recommended to use hierarchical/ 
vine copulas to model the dependence structure of more than two 
variables. Also, the interaction between ET-Q, ET - TWSC, and TWSC-Q 
pairs could be explored. In addition to these combinations, TWSC was not 
subdivided into different components like snow water equivalent storage 
(SWE), groundwater storage (GWS), and soil moisture storage (SMS). 
Future studies could look into the probabilistic prediction of the sub 
components of TWSC for the same scenarios of a given precipitation used 
in this study by extending the work of (Shamsudduha and Taylor, 2020). 
Probabilistic predictions could also be carried out on a seasonal basis (Bibi 
et al., 2019). 

5. CONCLUSION 

Precipitation is known to be the major component of the terrestrial water 
cycle. Precipitation data obtained from gauge records is plagued by wind-
induced under-catch and altitude bias. It is also sparsely recorded in 
mountainous regions. Reanalysis data are derived from model and are not 
gauge corrected. Satellite-based precipitation has wide coverage but can 
under/over predict low/high precipitation depending on the climate of a 
region. For a transboundary basin like Brahmaputra where gauge data of 
hydrometeorological variables are rarely available in the public domain, 
the alternative is to use the data sets obtained from various types as stated 
above. 

This study is the first attempt to conduct a comparative study of 
APHRODITE, ERA5, and IMERG to probabilistically predict TWSC, ET, and 
Q for a large river basin, the Brahmaputra using the concept of dependence 
structure and copulas. In this study, a bivariate dependence structure was 
constructed to predict the conditional distributions of TWSC, ET, and Q for 
different precipitation scenarios. Based on the KS-statistic and p-values, 
the optimal marginal distributions are gamma for APHRODITE and IMERG, 
lognormal for ERA5 and discharge, normal kernel density function for 
TWSC, and logistic for ET. The optimal copulas are Frank for all the three 
precipitation-TWSC pairs, ERA5-ET, and ERA5-Q, Clayton for the 
remaining pairs. The Pearson's linear and Spearman's rank correlations 
for all the pairs of variables are significant for observed and simulated 
values. The non-exceedance probability of all the dependent variables 
(lower percentile) decreases with an increase in precipitation. However, 
the exceedance probability of the same variables (upper percentile) 
increases gradually with an increase in precipitation. 
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