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 Coagulation and flocculation are one of the most important steps in leachate treatment. The main difficulty is 
to determine the optimal dose of coagulant to be injected according to the characteristics of the extract. Poor 
control of this process can lead to a significant increase in operating costs and failure to meet quality 
objectives at the outlet of the treatment plant. Aluminium sulphate is the most commonly used coagulant 
reagent. The determination of the coagulant dose is made using the test called the "Jar Test" conducted in the 
laboratory. This type of approach has the disadvantage of having a relatively long delay time and therefore 
does not allow automatic control of the coagulation process. The present work describes a Takagi Sugeno (TK) 
neuro-fuzzy model, developed for the prediction of the coagulant and flocculant dose used during the 
clarification phase in the Moroccan leachate treatment plant. The ANFIS model (fuzzy inference system based 
on adaptive neural networks), which combines fuzzy and neural techniques by forming a supervised learning 
network, was applied during the calibration phase and tested during the validation period. The results 
obtained by the ANFIS model were compared with those obtained with a multilayer perceptron neuron 
network (MLP) and a third model based on multiple linear regression (MLR). A coefficient of determination 
(R2) of the order of 0.92 during the validation period was obtained with the ANFIS model, whereas for the 
MLP, it is of the order of 0.65, and for the MLR model it does not exceed 0.4. The results obtained are of great 
importance for the management of the installation. 
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1.   INTRODUCTION 

Morocco's geographical location and the configuration of its relief explain 
the great complexity of its water problems. The temporal and spatial 
variability of precipitation is considerable and constitutes a characteristic 
of Morocco's climate (Ouzerbane et al 2021; Boufala et al 2021). It is the 
cause of droughts that can last more than two years, and of floods due to 
violent storms or generalized weather disturbances. Faced with these 
extreme phenomena, the country has been able to adapt thanks to the 
adoption of a policy capable of meeting the needs of the various water 
users ( Abdelfadel et al 2020). In addition, to support socio-economic 
development, Morocco has implemented a national strategy for integrated 
water resources management for the 2030 horizon. It aims essentially at 
managing water supply and demand, preserving natural environments, 
reducing the negative impacts of extreme phenomena, regulatory reforms 
and strengthening means and skills (El Messbahi  et al., 2020; Mliless et al., 
2020). 

Two main objectives are targeted in the management and operation of a 
water treatment plant: a quality objective and a cost objective ( Bell et al., 
2021). To achieve the quality objective, it is necessary to produce a 
sufficient quantity of water continuously and with a quality that complies 
with the increasingly stringent drinking water standards in force 
(chemical, microbiological, etc.) This implies the design of a sophisticated 
treatment plant that is correctly dimensioned and includes a wide range 

of mechanical and hydromechanical equipment. When the water to be 
treated passes through such a system, the quality of the water obtained is 
modified at the physical, chemical or microbiological level (Batista  et al 
2020).  

The nature and extent of these modifications depend on the characteristics 
of the water at the entrance to the plant and the degree of interaction 
between the various components of the process involved (Baxter  et al  
2020). Due to a large number of variables, as well as the complexity of the 
biological, physical and chemical phenomena involved in drinking water 
treatment processes, it is often very difficult to quantify in advance the 
interactions and relationships that exist between the inputs (variables) 
and outputs (quality parameters) of these processes Coagulation is a very 
important step in the production of drinking water from raw water. It aims 
at destabilizing colloids and their agglomeration as well as fine particles in 
suspension (Karnena  et al.,  2021). The consumption of coagulant agents 
makes this treatment step the most expensive operation in the treatment 
chain (Adetiba et al 2014;  Heddam et al 2012). 

The consumption of coagulant agents makes this processing step the most 
expensive operation in the processing chain. 

Al2(SO4)3 → Alx(OH)y(SO4)z → Al(OH)3                                                   (1) 

Stage 1 is a hydrolysis phase, while during stage 2 the Al(OH)3 precipitate 
is formed. The addition of the coagulant to water has the following steps 
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:(i) reduction of the hydrostatic charge by its adsorption to the surface of 
the particles; (ii) reduction of the diffuse charge. Therefore, the main 
factors influencing the efficiency of coagulation is the pH (Wei et al 2015), 
the initial turbidity (Yan  et al., 2008), and the temperature of the water. 
Other variables characterizing the raw water influence the coagulation 
process considerably, namely, water conductivity, as well as dissolved 
oxygen (DO) (Wang et al., 2021). This measurement allows the 
professional to ensure that ultraviolet disinfection is possible (Semerjian 
et al., 2003; Ni and Wang, 2020). During the coagulation phase, the aim is 
to maximize the destabilization of particles and organic colloids to 
facilitate their agglomeration and subsequent removal by a solid-liquid 
separation process and to minimize the concentration of residual 
coagulant. The cost minimization of the operation is done by coagulation 
that is considered optimal. It corresponds to the coagulant dosage that 
ensures the achievement of all quality objectives (Ayat et al.,  2021) ( 
Hassan El Ouazzani et al  2020).  

To evaluate the optimal conditions for coagulation and floculation, so-
called Jar-Tests (JT) are conducted on a laboratory scale. These, conducted 
under a wide range of operating conditions, determine the type of 
coagulant, its dosage, pH and agitation conditions that maximize turbidity 
reduction (Katano et al., 2021; Mabrouki et al., 2019). This type of 
approach has the disadvantage of having a relatively long response time. 
The coagulant dose is only modified once an event has occurred. Moreover, 
it does not allow following finely the evolution of the raw water quality ( 
Baxter  et al., 1999; Mabrouki et al.,  2019). This shows the interest of 
having automatic and efficient control of this process for better treatment 
efficiency and a reduction of operating costs. In recent years a new 
approach has been developed, which is the regulation of the coagulation 
process based on the descriptive variables of the raw water quality. This 
technique requires finding a model linking the optimal coagulant dose to 
these different variables  (Valentin et al., 2000). Input/output regression 
modeling has already been used in many applications in this field. The 
proposed approaches are most often based on linear regression models 
(Bazer-Bachi et al., 1990). 

Two mathematical models based on polynomial equations were proposed, 
relating the optimal dose of coagulant (aluminium sulfate) to the 
descriptive variables of raw water quality, namely: turbidity, resistivity, 
organic matter content, temperature and the nature of the mineral 
suspension. Other linear models have been proposed (Ratnaweera et al., 
1995). The model is based on calcium ion concentration, bicarbonate, 
sulfate, initial turbidity, temperature and pH. The data used in the model 
developed in this study are river flow, sedimentation time, temperature, 
turbidity, pH and conductivity, while the model proposed includes color, 
river flow, pH, conductivity and temperature (Zheng et al., 2011). These 
studies have shown interest in this approach but also the limitations of 
linear modeling for this type of problem. The important progress made in 
the last few years in the field of artificial intelligence has made it possible 
to reduce the difficulties and to overcome the limitations of linear models. 
Models based on the technique of artificial neural networks have been 
developed (Li,  et al., 2004). This modeling has been integrated with the 
construction of a software sensor for the online determination of the 
optimal coagulant dose according to various raw water quality 
characteristics such as turbidity, pH, conductivity, etc. The model is based 
on two types of neural networks, a multilayer perceptron (MLP) 
(Madhiarasan et al., 2017). On the one hand, and a network-based mainly 
on the use of Kohon's self-organizing maps for data preprocessing, on the 
other hand (Turner et al., 1995; Adger et al., 2000). Other models have 
been proposed which all express the dose of coagulant to be injected as a 
function of the different descriptive variables characterizing the raw water 
at the inlet of the water treatment plant. Some studies have shown the 
importance of neural networks as a tool for the elaboration of 
mathematical models for automation study supervision of the processes 
involved in the water treatment plants (Fang et al., 2021; Lek et al., 1999; 
Nikzad et al., 2012). In this paper, an alternative method for predicting the 
coagulant dose as a function of six descriptive variables characterizing the 
raw water at the leachate treatment plant inlet is proposed.  

This method is based on the Adaptive Neuro-Fuzzy Inference System 
(ANFIS) model, which combines floue logic and neural networks to form a 
hybrid network, using error backpropagation as a learning algorithm. The 
results obtained are compared with those of an artificial neural network-
based model, the multilayer perceptron (MLP) and a multiple linear 
regression (MLR) based model. In order to reduce the amount and cost of 
chemicals required for treatment, several authors have studied the 
possibility of recirculating part of the chemical sludge produced 
(preformed flocs). This recirculation would allow exploiting both the 
residual coagulant power of the sludge and its adsorption capacity while 
providing a high coagulation concentration. 

2.   MODELS USED 

2.1   Multiple linear regression 

Regression analysis is a statistical technique that makes it possible to 
estimate the relationship between variables that have a reason and 
outcome relationship (Kaya Uyanık et al., 2013). Contrary to the concept 
of simple linear regression, which models a response variable Y, starting 
from a single predictor variable X (Li et al., 2018). from a dataset that 
includes observations for these two variables for a particular population 
(Tranmer et al., 2008). Multiple regression is performed to describe how 
a single response variable Y depends linearly on several predictor 
variables (x1, x2, ...., Xp). As an example: The selling price of a store may 
depend on the appropriateness of its location, its area, the year of 
construction of the house and many other factors. In addition, for the study 
of multidimensional data, (Wong et al., 2020) the multiple linear 
regression model has proven to be the most widely implemented 
statistical tool for understanding the relationship between several 
independent variables and a dependent variable (Davim et al., 2008) The 
general expression for this model can be written as follows: 

y = β0 + β1x1 + β2x2 + ··· βkxk +  ε.                                      (1) 

Where: where Y is the dependent variable, x and n are independent 
variables, α the coefficients and ε the random error (S.-I. Lee et al., 2019 ). 

2.2   Artificial neural networks 

The study of neural networks began in the early 1940s with the work of 
McCulloch and Pitts and in 1962, it was extended to the problems of 
classification and pattern recognition by Rosemblatt (Rosemblatt, et al 
1958; Muazu Musa et al.,  2020). Indeed, neural networks are tools that are 
found very often with the purpose of classification, estimation, prediction 
and segmentation. They have their origins in biological models and their 
composition is based on elementary units called neurons. Moreover, these 
networks are organized according to architecture and they are well 
adapted for problems with continuous and possibly noisy variables. They 
obtain good performances, in particular, for pattern recognition (G. D et 
al.,  2007). Regarding a neural network, in the artificial sense, or an 
artificial neural network (ANN), as their name indicates, are 
computational networks that try to achieve a simulation in a coarse way 
the networks of nerve cells (neurons) of the central nervous system 
(human or animal)  through the processing of information that is based on 
simplified mathematical models of neurons whose learning process 
results from the experience (Oliveira et al., 2020). They are made up of a 
set of simple, analogous entities, capable of interacting with other neurons 
through the structure of the network that they form (Figure 1). Neurons 
are linked together by connections, that is, direct and oriented links from 
one neuron to another. A neuron determines its value (its state) according 
to its environment via the connections of the network which allow it to 
know the state of the neurons to which it is linked. A neuron k calculates 
its state and produces an output signal yk, from the input signals x1, x2, ... 
. xp, constituted by the state of the connected neurons, weighted by the 
synaptic weights of the connections w1, w2, ..... wp. The production of a 
new state is realized by the function f, called activation, transition or 
transfer function. As illustrated in Figure 1. The production of a new state 
is realized by the function f, called the activation, transfer or transition 
function. 

 

Figure 1: An artificial neuron 

The activation function f is a local procedure that each neuron applies by 
updating its activation level according to the activation of its neighbours. 
The most commonly encountered function is a sigmoid function such that 
if the weighted sum is greater than a threshold, then the neuron is 
activated; otherwise nothing. 

S(y) =
1

1+e−y
                                                                                                       (2) 
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The output of the neuron is a non-linear function of its input (Aj): 

Yj = f (Aj)                                                                                                        (3) 

Artificial neural networks are useful tools for solving many types of 
problems, such as classification, clustering, optimization, approximation 
and prediction (Desai et al., 2020). The states of the neurons of the first 
layer will be fixed by the problem being treated through a vector x = (x1; 
x2; ...xn). With the states of the first layer being fixed (Figure 2), the 
network will be able to calculate the states of the neurons of the other 
layers. In this sense, each neuron of the hidden layer receives a parameter-
weighted sum (Wij), which are then often referred to as "weights" or, 
because of the biological inspiration of neural networks, "synaptic 
weights", of all the inputs, to which is added a constant term  W0 or 
"bias": 

j = W0 + ∑ Wij × Xi
n
i=j                                                                               (4) 

 

Figure 2: Architecture of the multilayer perceptron (MLP) neural 
network. 

Each neuron in the output layer receives a parameter-weighted sum (wjk), 
to which is added a constant term B0 or "bias" : 

OK = B0 + ∑ Wjk × Yj
m
j=1                                                                                    (5) 

The output of the network O (for Output) is a linear function of the weights 
of the last layer of connections (which connect the m hidden neurons to 
the output neurons), and it is a nonlinear function of the parameters of the 
first layer of connections (which connect the n inputs of the network to the 
m hidden neurons). This property has very important consequences (Shi 
et al.,  2021) 

It has been shown that a neural network with a finite number of hidden 
neurons, all with the same activation function, and a linear output neuron 
is a universal approximation (Taud et al, 2018). The values of the weights 
and the bias are modified and updated via a supervised learning algorithm. 
The latter consists in obtaining a set of examples, i.e. a finite set of known 
input-output pairs (examples that constitute the training set).  

The objective of this calculation is the minimization of an error function 
between the desired response and the response obtained at the output of 
the model. The most commonly used algorithm is the backpropagation of 
the error. It estimates the gradient of the error function for the parameters 
(weights and bias) of the model and performs the adaptation of these 
parameters successively from the output layer to the input layer (Figure 
1). This consists in performing a gradient descent on the error criterion 'E' 
by minimizing a cost function, generally the mean square error (Djokhrab 
et al.,  2015). 

Gradient methods can be divided into two categories: first-order methods, 
which use only the gradient of the function (case of the error 
backpropagation algorithm) and second-order methods, which generalize 
the gradient descent to the second degree of the error function. These are 
iterative methods that consist in replacing the cost function with its 
quadratic approximation. We can mention for example the Newton, quasi-
Newton and Levenberg-Maquardt methods. The latter is used in our study. 

2.3  -Neuroflou - neuro-fuzzy model 

Neuro-fuzzy systems are systems that combine the advantages of two 
complementary techniques and provide a good knowledge representation. 

They are trained by a learning algorithm inspired by the theory of neural 
networks (Nauck et al., 1997). The integration of neural networks within 
these systems improves their performance thanks to the learning capacity 
of these networks. Conversely, the injection of fuzzy rules in neural 
networks, often criticized for their lack of readability, clarifies the meaning 
of the network parameters and facilitates their initialization, which 
represents a considerable gain in computation time for their identification. 
The table below lists the industrial and scientific advantages of neural 
networks (Table 1). 

Table 1: Industrial and scientific advantages of neural networks 
(Vasile et al., 2009). 

Industry benefits 

• Complexities of real systems 

• Real systems = dynamic systems 

• Real time 

• Model from data 

Scientific Advantages 

•  

• Scientific openness 

• Easily adaptable 

• Ability to interpret 

2.3.1   Logical floue 

Fuzzy logic is a very efficient method coming from fuzzy set theory, for the 
reason of filling the gap between the imprecision of the real world and the 
precision of classical logic. It is seen better adapted to the real world than 
binary logic, because of its mastery of the concept of uncertainty and 
imprecision which are logical consequences of the complexity of systems.  
Indeed, it is very useful in conditions where there is large uncertainty and 
unknown variations in the parameters and structure of the system ( 
Madour, F. et al; 2007). 

 2.3.2    Characteristics of the subsets flous 

A linguistic variable (Menni et al., 2017),  is a variable whose values are 
words or sentences expressed in a natural or artificial language ( DUBOIS, 
et al; 2021). 

A linguistic variable is defined as: "x_name, L(x),U, Mx" with: (i) x_name : 
the name of the linguistic variable (e.g. : dose of coagulant), (ii) L(x) = {L1; 
L2;....; Ln} is the set of linguistic values (or called symbol or linguistic term 
or label) that the variable x_name can take. For example L(x) = {low, 
medium, high} to characterize the dose of coagulant; (iii) U corresponds to 
the universe of discourse associated with the variable x_name (example: 
the dose of coagulant varies between 5 and 35 mg.L-1). This is the set of all 
numerical values that the numerical variable associated with the linguistic 
variable x_name can take; (iv) Mx is a function that associates any symbol 
in L(x) with a meaning floue. 

Modeling an input/output system by floue logic involves three essential 
steps: 

• The fuzzification of input variables, which consists of transforming the 
available numerical inputs into floue parts. It is then possible to 
associate with variables coefficients belonging to flous subsets taking 
values in the interval (0, 1). 

• The inference floue, composed by the rule base and by the database. The 
combination of the inputs with the floues rules allows for inference. 

The defuzzification is the reverse operation of the fuzzification. It converts 
the floues parts related to the outputs of the inference mechanism into 
numerical outputs. There are several defuzzification techniques (Das et al., 
2019; Takagi et al., 1985). 

•  However, the most commonly used technique is the centre of gravity 
technique. 

2.3.3    Model flou used: The Sugeno model 

Takagi and Sugeno have proposed a type of fuzzy model, suitable for 
approximating a general class of nonlinear systems. It consists of rules 
whose conclusion part is put in the form of a linear state representation 
(Tanaka et al., 1992). 

. Like Mamdani's, the Takagi - Sugeno model is built from a base of 
"If...Then..." rules, in which while the premise is always expressed 
linguistically, the consequent uses numerical variables rather than 
linguistic variables. The consequent can be expressed, for example, as a 
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constant, a polynomial, or more generally as a function or a differential 
equation depending on the variables associated with the antecedent. In a 
general way, a Takagi-Sugeno (TS) type model is based on a collection of 
Ri rules of the type (Moreno Cardenas et al., 2020):  

Ri : if x and  Ai    So     yi   = fi (x),  i = 1, 2,…. R                                        (6) 

Where :  

Ri: the i-th rule of the model  

r: the number of rules that the rule base contains.  

x∈ R: the input variable (antecedent)   

y∈ R: the output variable (consequent). 

Ai: the fuzzy subset of the antecedent of the i-th rule, defined, in this case, 
by a (multivariable) membership function of the form : 

µAi(x) : Rp------->[0, 1]                                                                                    (7) 

2.4. ANFIS model 

ANFIS (Adaptive Neuro-fuzzy Inference System) is one of the earliest 
neuro-fuzzy systems in existence (Sagir et al., 2020). 

, it is a typical approach in neuro-fuzzy development and robustness, 
which has shown significant, results in modeling non-linear functions. It is 
a class of adaptive networks introduced by J.S.R. Jang (Jang et al., 1995). 

 and can be seen as a non-looped neural network for which each layer is a 
component of a neuro-fuzzy system. The ANFIS network is composed of 
five layers; excluding the input layer (Malekizadeh et al., 2020). 

 ANFIS is used for the design of two systems, namely thermal comfort and 
group technologies in production and operations management 
(Naadimuthu et al., 2007). 

It consists in using a 5-layer MLP neural network for which each layer 
corresponds to the realization of a step of a Takagi Sugeno type fuzzy 
inference system .Among the advantages of the model ANFIS (Figure 3): 

• Exploitation of the available knowledge 

• Reduction of the size of the rule base 

• Reduction of the learning complexity 

• Immediate efficiency from the beginning of the learning process and the 
possibility to avoid erratic initial behaviors. 

 

Figure 3: The architecture of ANFIS  (Djokhrab,  2015). 

The adaptive neural fuzzy network (ANFIS: Adaptive Neural Fuzzy 
Inference System) is composed of a set of neurons connected by direct 
connections. Each neuron models a parameterized function; changing the 
values of its parameters causes the function to change, as well as the 
overall behavior of the adaptive network. The set of parameters of an 
adaptive network is distributed over the set of neurons constituting it. This 
means that each neuron has a local set of parameters: if this set is empty 
then the associated neuron is represented by a circle and its function is 
fixed; fixed neuron, otherwise it is represented by a square and the 
associated function depends on the values of these parameters; adaptive 
neuron. In an ANFIS, the connections between neurons are only used to 
specify the direction of propagation of stimuli from other neurons.  The 
structure of ANFIS is composed of five layers, two types of membership 
function (bell or Gaussian) and if-premise rules then consequently ANFIS 
is one of the very first neuro-fuzzy systems that exist. It is widely cited in 
the literature as it has proven its efficiency over time with its simplified 
learning algorithm: the gradient descent method and the least-squares 
method (Verma, S. K., et al; 2018). 

Layer 1: Each node in this layer is an adaptive square node with a: 

O1,i = μMi(X1)  pour i = 1,2, … , m                                                        (8) 

O1,i = μLi2
(X2

) pour i = 1,2, … . , m                                                          (9) 

Where x1 (or x2) is the input of node i, Mi (or Li) is the linguistic term 
associated with its function. 

The nodes in this layer represent the degree to which x1 (or x2) belongs to 
Mi (or Li); this is the fuzzification phase. 

Layer 2: Each node in this layer is a fixed circular node, called (Π), which 
receives the outputs of the fuzzification nodes and computes their 
activation. The number of nodes in this layer is equal to the number of 

"Si.....Also "rules in the flou inference system. 

O2,i = Wi = μMi(X1) × μLi(X2)   , i = 1,2                                       (10) 

Layer 3: Each node in this layer is a fixed circular node, called (N). This is 
the normalization layer in which each node computes the normalized 
degree of membership in a given floue rule. The result obtained represents 
the participation of each floue rule in the final result. This layer returns 
normalized defuzzification outputs. 

O3,i = wi =
Wi

W1+W2
                                                                                (11) 

Layer 4: Each node i in this layer is an adaptive square node that 
corresponds to the initial input weighted by the normalized membership 
degree of the rule floue. 

O4,i = Wifi = Wi (pi. x1 + qi. x2 + ri)                                                                 (12) 

Where wi is the normalized output of layer 3, and {pi, qi, ri} is the set of 
output parameters of rule i. This is the defuzzification phase. 

Layer 5: consisting of a single circular fixe node called (Σ) which receives 
the sum of the outputs of all defuzzification nodes, and provides the output 
of the ANFIS model. 

O5,i = ∑ Wii fi =
∑ Wifii

∑ Wii
                                                                                (13) 

2.4.1   Learning the ANFIS model 

Over time, ANFIS has become widely cited in the literature due to its 
proven effectiveness with its simplified learning algorithm: the gradient 
descent method and the least-squares method (Sagir and Abubakar, 
2020).  
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In ANFIS learning, membership function parameters are extracted from a 
data set that describes the behavior of the system. The ANFIS learns 
features from the dataset and adjusts the system parameters according to 
a given error criterion. Successful implementations of ANFIS in biomedical 
engineering have been reported for classification (Sihag, P., et al;  2019), 
data analysis (Shekofteh  et al., 2017).  

2.5   Model validation 

Validation allows us to judge the ability of the model to reproduce the 
modelled variables. Several criteria were chosen. In our case, we used the 
coefficient of determination (R2), the root means square error (RMSE) and 
the biased mean (B). 

2.5.1    Coefficient of determination (R2) 

R2 = [
1

N
∑ (Yiobs−Yobs)(Yical−Ycal)N

i=1

σobs×σcal
]

2

                                                      (14) 

With:  

yiobs and yical are the observed and model-calculated values of the coagulant 
dose for day i, respectively, Yobs and Ycal are the means of the observed and 
model-calculated values, σobs and σcal are the standard deviations of the 
observed and calculated values. 

2.5.2   Root Mean Square Error (RMSE) 

Nowadays, it is one of the most widely used measures of goodness of fit in 
structural equation modeling (SEM) (Jackson et al., 2009). 

 recently reviewed 194 SEM studies published between 1998 and 2006 
and reported that RMSEA was the second most popular goodness-of-fit 
index reported in 64.9% of the studies reviewed. The high popularity of 
the RMSEA is based on its properties: 

• First, simulation studies have shown that it is largely invariant to 
sample size. 

• Second, it rewards parsimonious models. 

• Third, the RMSEA has a minimum of zero with suggested conventions 
for cutoff criteria for excellent, good, and poor fit. 

• Fourth, a confidence interval around the RMSEA point estimate can be 
calculated to assess the degree of uncertainty, allowing for hypothesis 
testing. 

• Fifth, power analysis can be performed fairly easily to determine the 
trial number needed for adequate power in these tests (Wang et al., 
2021).  

3.    METHODOLOGY 

The database used was randomly split into two parts, one for the 
calibration of the models (MLP, RLM and ANFIS) and the identification of 
the parameters which represent 80% of the total size of the database and 
the other for the validation (20%). The performance criteria are computed 
in both calibration and validation modes. In the case of our study, the 
variables are of a different physical nature, characterized by different 
units, which leads us to normalize them in order to bring the range of 
evolution of the values taken by the variables within a standardized 
interval, fixed a priori. It is desirable because it avoids the system to be 
parameterized on a particular range of values, thus ignoring the extreme 
values. For our case, we have normalized the data using the following 
formula: 

Xni,k =
Xi,k−mk

σk
                                                                                                   (15) 

With: 

xn, i, k: the standardized value of variable k for individual i 

mk: the mean of the variable k 

σk: the standard deviation of variable k. 

Principal component analysis (PCA) was applied to detect the contribution 
of each input variable (descriptive variable characterizing the raw water) 
in explaining the phenomenon studied in order to optimize the relevant 
number of inputs for the models applied and to highlight possible 
influences of a descriptive variable on the phenomenon. 

Principal component analysis (PCA) is a descriptive technique that allows 

us to study the relationships that exist between variables, without taking 
into account, a priori, any structure (Ringnér et al., 2008). The objective of 
PCA is to provide linear summaries of the original variables, i.e. to replace 
the original variables with linear combinations of them. These new 
variables are called principal components. The interesting results from the 
application of a PCA are the correlation coefficients of the original 
variables, associated with each principal component, the matrix of 
eigenvectors and the associated eigenvalues.  

Note that each principal component is representative of a portion of the 
variance of the measures of the process studied. The eigenvalues are the 
measures of this variance and can therefore be used to select the number 
of principal components to be retained. Many research studies have 
proposed the use of principal component analysis as a tool for modeling 
complex processes from which a model can be obtained. The principal 
component analysis is an extremely powerful technique for synthesizing 
information, used to reduce the dimensionality of a data set especially 
when there is a large amount of quantitative data to process and interpret 
(Zaki et al., 1993). Thus, a set of correlated variables is transformed into a 
new set of orthogonal variables called principal components, so that as 
much of the total variation in the observed data as possible is reported by 
a small number of principal components. Each principal component is a 
linear combination of all the original variables (Kacha et al., 2019). 

The first essential step in PCA is to choose the variables from which to 
perform the PCA. Depending on what is being analyzed (Table 2), one will 
choose one variable or another. Once the variables have been selected, the 
calculation of the correlation matrix makes it possible to analyze the 
bilateral relations existing between the different variables selected 
(Libório et al., 2020). 

Table 2: Statistical summary of selected variables. 

Variables Mean 
Standard 
deviation 

Min Max 

Temperature (°C) 16.6 3.49 10.2 26.2 

pH 7.82 0.25 7.23 8.6 

Conductivity (ms.cm-1) 3.27 366 1.82 3.32 

Turbidity (NTU) 42 24 1.8 50.23 

Dissolved oxygen (mg.L-1) 4.73 2.98 0.14 13.2 

Coagulant (g.L-1) 22.79 7.48 10 40 

Flocculent (g.L-1) 2.50 2.50 2.5 2.5 

The principal component extraction process continues until there are as 
many principal components as there are variables. The statistics of 
interest from a PCA are the variable weights vectors, associated with each 
principal component (Table 2), and their variance, λi (Table 2). The picture 
of the original variable weights is used to interpret each principal 
component while the associated variance indicates what percentage of the 
total variance of the set of original variables each principal component 
represents. Based on the results, we note that it is essential to consider the 
first five principal components, in order to have 90% of the total variance. 

4.   RESULTS AND DISCUSSION 

4.1   Description of the results obtained with the PCA 

The first eigenvalue (λ1 = 2.627) represents the variance explained by the 
first principal component (CP1). It corresponds to 37.52% of the total 
variance (Table 2) and is therefore found to be the predominant axis. It is 
explained by the variables pH, TU and T. There is a strong correlation 
between these variables and the first principal component. We will take 
this observation into account later to avoid the redundancy of information. 
The principal component CP2 has the second largest eigenvalue (λ2 = 
1.427). It represents 20.38% of the total variance and is built around the 
OD variable with a correlation coefficient of 0.53 in absolute value. The 
two components CP1 and CP2 explain 57.90% of the total variance. The 
third principal component accounts for 15.58% of the total variance with 
an eigenvalue of (λ3 = 1.091) and is built around the variable CE with a 
correlation coefficient of 0.65 in absolute value. The three components 
CP1, CP2, and CP3 explain73.48% of the total variance. Since principal 
component analysis did not significantly reduce the number of original 
variables, by a smaller number, an attempt to compare between different 
combinations of the input variables was conducted. Several models were 
tested.  

We developed five model variants (Table 3), namely variant v2 with two 
input variables (15 models), v3 with three input variables (18 models), v4 



Water Conservation & Management (WCM) 8(3) (2024) 257-266 

 

 
Cite The Article: Mariam El-Marmar, Jamal Mabrouki, Mohammed Fekhaoui  (2024). Modeling and Optimization of 

Coagulation-Flocculation for Leachate Treatment. Water Conservation & Management, 8(3): 257-266 

with four input variables (13 models), v5 with five input variables (6 
models) and variant v6 with six input variables (1 model). In total, 53 
models representing five variants were tested and the best model from 
each variant was selected (Table 3), namely model M2 using T and CE; 
model M3 with T, CE and pH; model M4 with T, CE, pH and TU; model M5 
with T, CE, pH, TU and OD and model M6with T, CE, pH, TU, and OD. For 
the five models mentioned, the coagulant dose represents the output of the 
model. For the flocculation dose, the concentration varies between 2 and 
3 g/l. 

4.2   Description of the results obtained with the ANFIS model 

To highlight the advantages of the proposed neuro floue modeling 
approach, a comparative study was performed comparing the 
performance obtained with the neuro flou ANFIS model and that obtained 
using an artificial neural network-based model, multilayer perceptron 
(MLP) and multiple linear regression (MLR) based model, respectively. In 
the case of the ANFIS-type neuro flous models used in the present work, 
the total number of rules floues (Table 4) to be optimized will be 
determined by the following rule: 

NRF = NSFNVE                                                                                                 (16) 

Where: NRF represents the number of floues rules established; NSF 
represents the number of linguistic values (label) for each input variable, 
and NVE represents the number of input variables. We chose three 
linguistic values for each input variable, each represented by a Gaussian-
like membership function, and given by the following formula: 

f(X, σ, c) = e
−(x−c)2

2σ2                                                                                                  (17) 

A Gaussian membership function can be defined by two parameters: σ and 
c. The latter two constitute the parameters of the premise parts to be 
optimized during the learning phase. We immediately notice that the 
number of parameters of the premise parts to be optimized (Table 4) will 
be determined by the following rule: 

NPP = NSF × NVE × 2                                                                            (18) 

With: NPP represents the number of parameters of the premise parts. 

 

The parameters of the conclusion parts (consequent) to be optimized on 
their part are determined by the following rule: 

NPC= NRF × (NVE + NVS)                                                                            (19) 

Where: NPC represents the number of parameters of the conclusion parts; 
NVS represents the number of output variables (the coagulant dose and 
flocculation). Moreover, it should be noted that as the number of partitions 
in linguistic values increases, the number of parameters to be optimized 
increases. Thus, the total number of parameters to be optimized (NTP) is 
equal to the sum of the parameters of the conclusion parts (NPC) and the 
premise parts (NPP). 

NTP = NPP + NPC                                                                                                  (20) 

Table 3: Results of the application of principal component analysis. 

Eigen value matrix 

λ1 λ2 λ3 λ4 λ5 λ6 λ7 somme 

2.62 1.42 1.09 0.69 0.52 0.36 0.27 100 

Contribution of the principal components 

CP1 CP2 CP3 CP4 CP5 CP6 CP7 Somme 

37.52 20.38 15.58 9.91 7.42 5.27 3.9 100 

Cumulative contributions of the principal components 

37.52 57.90 73.48 83.89 90.81 96.08 99.98 100 

Matrix of correlations between principal components and 
original variables 

 CP1 CP2 CP3 CP4 CP5 CP6 CP7 

DC -0.348 -0.657 0.482 0.348 -0.219 -0.017 -0.216 

pH 0.777 0.009 0.020 0.381 0.396 -0.296 -0.076 

Tub 0.806 -0.295 0.121 0.047 -0.354 -0.120 0.328 

CE -0.428 -0.490 -0.654 -0.153 -0.079 -0.342 -0.043 

OD 0.523 -0.535 -0.506 0.160 0.093 0.386 -0.030 

 

Table 4: Structures of the tested models. 

Variants Number of Models tested Models retained 
Input variable 

Output variable 
T pH Tub CE OD 

V2 15 M2 I 0 0 0 0 DO DF 

V3 18 M3 I I 0 0 0 DO DF 

V4 13 M4 I I I 0 0 DO DF 

V5 6 M5 I I I I 0 DO DF 

V6 1 M6 I I I I I DO DF 

I : variable included ; 0 : variable excluded 

4.3   Description of the results obtained with the MLP model 

The second type of model used is based on artificial neural networks: it is 
the multilayer perceptron (MLP). In this study, we used a single hidden 
layer with a sigmoid activation function, with a variable number of 
neurons. For each model tested we varied the number of neurons from 1 
to 20, and the best topology for each type of model was selected (Table 5). 
The output layer contains a single neuron with a linear transfer function. 
Mathematically, for a three-layer MLP, with E the number of input nodes, 
C the number of hidden nodes and S the number of output nodes. The total 
number of parameters to be optimized (NTP) is determined by the 

following rule: 

NTP = [E × C] + [C] + [C × S] + S                                                       (21) 

4.4 Description of the results obtained with multiple linear 
regression 

For the multiple linear regression model, the prediction formula takes the 
general form represented by equation 2. The construction of the model, in 
this case, is simply a matter of determining the partial regression 
coefficients (Table 5). 

Table 5: Total number of parameters for each ANFIS model tested. 

Model Number of fuzzy rules (NFR) 
Number of premise 
parameters (NPP) 

Number of consequent 
parameters (NCP) 

Total number of parameters 
(TNP) 

M2 9 12 63 75 

M3 27 18 189 207 

M4 81 24 567 591 

M5 243 30 1701 1731 

M6 729 36 5103 5139 
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Table 6: Total number of parameters for each MLP model tested 

Characteristics 
model 

M2 M3 M4 M5 M6 

Number of hidden neurons 7 19 15 7 13 

Number of optimized parameters 29 96 91 50 105 

Table 7: Regression coefficients for the different models tested 

Model 
Regression coefficients 

β0 β1 β2 β3 β4 β5 β6 

M2 -0.0297 0.4954 -0.0084 - - - - 

M3 -0.0296 0.5001 -0.0141 -0.0219 - - - 

M4 -0.0235 0.6049 -0.1454 -0.0224 0.3380 - - 

M5 -0.0238 0.6036 -0.1405 -0.0159 0.3435 -0.0162 - 

M6 -0.0239 0.6020 -0.1408 -.00150 0.3392 -0.0167 0.0087 

4.5 Comparisons and discussions of the results obtained by the 
different models 

As mentioned in paragraph 1, the coagulation and flocculation process 
involves very complex and non-linear reactions. The objective of our work 

is to design a model to determine the dose of coagulant and flocculation 
taking into account a large number of parameters. In this perspective, 
neural networks and neuro flous systems seem to be an interesting 
research path (Figure 4). 

 

Figure 4: Comparison of observed and calculated values for the RLM model, (a) calibration, (b) validation 

We tried to find an appropriate relationship between all (or some) of the 
model input variables. During all computational phases, we were 
interested in comparing the graphs from the validation and calibration of 
the different models tested, as well as in comparing the computed 
numerical criteria. For the ANFIS model, we used three linguistic values 
(label) for each input variable, while for the MLP model we varied the 
number of neurons in the single hidden layer from 1 to 20 as outlined in 
Section 5.3. After each test, we compare the output obtained and the 
desired output, we correct the weights to minimize the error committed. 
We proceeded to a comparison between the results obtained by the five 
selected models (Tables 7 and 8) in calibration mode as well as 
invalidation mode, namely models M2, M3, M4, M5 as well as the model 
M6 with six inputs that include the six descriptive variables characterizing 
raw leachate. It can be seen from Tables 7 and 8 that the results obtained 
by multiple linear regression (MLR) are very poor, both in calibration and 
validation mode;   whatever   the   number   of   input   variables   used,  the  

coefficient of determination does not exceed 0.36, while the RMSE is close 
to 8.15 invalidation mode for the six input model M6, which represents the 
best model based on multiple linear regression (MLR) (Figure 4). On the 
other hand, we notice that for both models M2 and M3, the multiple linear 
regression (MLR) models presents better results than the MLP model in 
validation mode, with a determination coefficient of about 0.25 and an 
RMSE of 8.26 for the M3 model, while for the MLP model, we record a 
determination coefficient of about 0.17 and an RMSE of 9.76 for the same 
M3 model. This reflects the complexity of the studied phenomenon, on the 
one hand, and, on the other hand, these two models do not reflect the 
physical reality of the studied coagulation process. We will see later that 
these two models will be excluded and that it is essential to include more 
variables in the input of the models to properly demonstrate the forte non-
linearity of the coagulant dose relationship as a function of the descriptive 
variables of the raw water. 

Table 8: Model results during the calibration period 

Model 

ANFIS MLP MLR 

R2 
B 

(mg.L-1) 
RMSE 

(mg.L-1) 
R2 

B 
(mg.L-1) 

RMSE 
(mg.L-1) 

R2 
B 

(mg.L-1) 
RMSE 

(mg.L-1) 

M2 0.40 -0.04 5.35 0.53 -0.05 4.28 0.27 -0.15 6.20 

M3 0.50 -0.04 4.91 0.58 -0.05 4.24 0.27 -0.15 6.21 

M4 0.72 -0.06 3.64 0.64 -0.06 3.69 0.34 -0.19 5.88 

M5 0.85 -0.07 2.67 0.72 -0.06 2.65 0.36 -0.20 5.80 

M6 0.95 -0.04 1.89 0.80 -0.07 2.52 0.37 -0.21 5.70 
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Table 9: Results of the models in the validation period. 

Model 

ANFIS MLP MLR 

R2 
B 

(mg.L-1) 
RMSE 

(mg.L-1) 
R2 

B 
(mg.L-1) 

RMSE 
(mg.L-1) 

R2 
B 

(mg.L-1) 
RMSE 

(mg.L-1) 

M2 0.26 -0.02 8.26 0.15 -0.01 10.31 0.25 -0.14 8.26 

M3 0.40 -0.04 7.38 0.17 -0.01 9.76 0.25 -0.14 8.26 

M4 0.72 -0.06 5.07 0.60 -0.05 7.82 0.32 -0.18 8.20 

M5 0.90 -0.08 2.94 0.62 -0.05 7.65 0.33 -0.19 8.19 

M6 0.92 -0.08 2.11 0.75 -0.07 7.34 0.35 -0.20 8.15 

For the MLP and ANFIS models (Tables 7 and 8), the results obtained are 
significantly better compared to those obtained by multiple linear 
regression (MLR), for models M4, M5 and M6. We note that the coefficient 
of determination R2 does not exceed 0.35, either in calibration mode or 
invalidation mode, for the models based on multiple linear regression. 

From the M4 model (Figure 5), which uses four descriptive variables, we 
notice a clear performance improvement. However, the ANFIS model 
performs better than the MLP model. R2 reaches 0.72 in both calibration 
and validation modes, while for the MLP model it is around 0.64 in 
calibration mode and 0.60 in validation mode. 

 

Figure 5: Comparison of observed and calculated values for the ANFIS model, (a) calibration, (b) validation 

 

Figure 6: Comparison of observed and calculated values for the MLP model, (a) calibration, (b) validation 

The best results of our research are obtained by the M6 model which 
includes all six descriptive variables. The ANFIS model (Figure 4) performs 
better than the MLP model (Figure 6). This is mainly due to the ability of 
flous models to simulate strong complex and nonlinear phenomena. We 
note that the coefficient of determination R2 reaches 0.95 for an RMSE of 
1.89 in calibration mode while it is around 0.92 for an RMSE of 2.11 
invalidation mode (Tables 7 and 8), while the MLP gives a coefficient of 
determination equal to 0.8 in calibration mode and 0.75 in validation 
mode. The neural network, in this case, consists of 13 hidden neurons with 
several parameters equal to 105 (Table 5). In light of the results obtained, 
we can conclude that the ANFIS model that includes the six descriptive 
variables (M6), namely (temperature, PH, conductivity, dissolved oxygen, 
and turbidity), is the final model selected in this work.  

The importance of the neuro flou ANFIS model lies in its ability to simulate 
complex and non-linear processes by taking into account a large number 
of parameters. It is important to recall that the selected model consists of 
more than 5,139 parameters with more than 729 floues rules (Table 6). 

5.   CONCLUSION 

This paper has materialized as a contribution to neuro floue modeling that 
we introduce in the management of the leachate treatment plant. The 
knowledge of the water quality variation at this plant is important to 
understand and better interpret the behavior of the different process 
components involved. To establish a mathematical model for the 
prediction of the coagulant dose (with fixing the flocculant dose), we 
proposed a comparison between two models based on the neural concept, 
one using a neural structure of its own which is the multilayer perceptron 
(MLP), and the second one a neural flou model that combines a flou 
inference system in a neural network (ANFIS), and a third model based on 
multiple linear regression (RLM). The results obtained by multiple linear 
regressions are far from acceptable, and a linear approach to this type of 
problem is ruled out. The results obtained by the ANFIS model are better 
than those found by the neural network. The numerical performances are 
more appreciable for the model using six descriptive variables. This 
confirms the complexity of the process and the strong non-linearity of the 



Water Conservation & Management (WCM) 8(3) (2024) 257-266 

 

 
Cite The Article: Mariam El-Marmar, Jamal Mabrouki, Mohammed Fekhaoui  (2024). Modeling and Optimization of 

Coagulation-Flocculation for Leachate Treatment. Water Conservation & Management, 8(3): 257-266 

relationship between the coagulant dose and the different descriptive 
variables. 
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